Monday, June 22, 2020

Increase of the yield of the elementary particles created at collider through manipulations with quantum vacuum. A chemical approach to the elementary particle physics.

The modern accelerators reached complexity level enough for more intricate manipulations with generated elementary particles. In modern approach the beams are interacting and the results of the strike is analyzed. Essentially this is close to the way the free radicals were created in the chemical experiments decades ago: powerful laser strike breaks away chemical bonds with generation of assembly of unstable chemical products (ions, free radicals, ion-radicals) which are to be analyzed spectroscopically. 
Researchers quickly realized, that in some cases the concentration of the unstable particles may be greatly increased if they quickly frozen inside some neutral matrix (liquid helium, liquid neon, liquid argon or liquid nitrogen). Such matrix isolation at helium temperature prevents any mobility and thus allows accumulation of the unstable products in high concentrations.
Such approach needs, of course, some manipulations with the molecular beams: not simply strike them with laser pulse, but do in the presence of the cold medium, so that the products created are delivered to the isolation matrix fast enough.
The only "isolation matrix" available in high-energy physics is quark-gluon plasma. So the idea of the future accelerator would be the cross-accelerator: in the reaction chamber the first beam prepares the spot of quark-gluon plasma and the second, more powerful beam will generate the elementary particles inside such a spot in the correct time: just before adronisation (cooling) of the quark-gluon plasma.
Why would new particles be created:
1.The quark-gluon plasma is kind of primordial quantum vacuum - the type of the vacuum existing soon after the big bang. Thus all four forces are closer to each other compare to modern quantum vacuum and the yield of the exotic particles responsible for unification of forces (including gravitational force) is expected to be higher.
2.Despite all those exotic particles are expected to be extremely short-lived, they must have at least some time in modern quantum vacuum. So if they are created just before adronisation of the quark-gluon plasma, they are to be cooled to modern quantum vacuum temperatures before they decay (obviously the decay time in the primordial quantum vacuum also is shorter compare to the modern quantum vacuum because of its temperature).
3.Possibly any interaction with parts of the quark-gluon adronising parts may accelerate cooling thus increasing the life-time (pretty much  like weak complexes between the highly reactive free radical and neutral molecule in the isolating matrix spread the wavefunction thus lowering the energy).
4.Future computers will be powerful enough to see the signs of the new particles in the mess created by the adronized quark-gluon plasma. Undoubtedly the interpretation of the results will be much more difficult.
Such experiments may seems to be far future for now, but in design of the future chambers it may be necessary already now to add the additional input window for the future crossed path of the preparation beam. It is expected that by the time the next generation of the accelerators is ready the concept of complex manipulation with the quantum vacuum (preheating of the quantum vacuum in the place of the particle generation) will be already developed to the level of possible implementation.
The particular particles of the interest from author point of view would be antigravitational Higgs boson [1]. The absence of the symmetry between matter and antimatter is not understood, but presumably the absence of the symmetry between matter and gravitational antimatter will be even worse (the gravitational force was split from the unified force first). So even inside the primordial quantum vacuum the probability of generation of any antigravitational particle (like antigravitational Higgs boson [1]) is really small. Correspondingly the direct observation of such antigravitational particle in the modern quantum vacuum is highly improbable (too long waiting time to see any event). Hopefully the idea of the preheated quantum vacuum  may increase the probability of the creation of such elementary particle and thus improve the chances of its detection in reasonable time.


References.
1.http://tipikin.blogspot.com/2019/12/quantum-vacuum-application-to-gravity.html

No comments:

Post a Comment